Social-based autonomic routing in opportunistic networks

Abstract

In opportunistic networks end-to-end communication between users does not require a continuous end-to-end path between source and destination. Network protocols are designed to be extremely resilient to events such as long partitions, node disconnections, etc, which are very features of this type of self-organizing ad hoc networks. This is achieved by temporarily storing messages at intermediate nodes, waiting for future opportunities to forward them towards the destination. The mobility of users plays a key role in opportunistic networks. Thus, providing accurate models of mobility patterns is one of the key research areas. In this chapter we firstly focus on this issue, with special emphasis on a class of social-aware models. These models are based on the observation that people move because they are attracted towards other people they have social relationships with, or towards physical places that have special meaning with respect to their social behavior. Another key research area in opportunistic networks is clearly designing routing and forwarding schemes. In this chapter we provide a survey of the main approaches to routing in purely infrastructure-less opportunistic networks, by classifying protocols based on the amount of context information they exploit.We then provide an extensive quantitative comparison between representatives of protocols that do not use any context information, and protocols that manage and exploit a rich set of context information. We mainly focus on the suitability of protocols to adapt to the dynamically changing network features, as resulting from the user movement patterns that are driven by their social behavior. Our results show that context-aware routing is extremely adaptive to dynamic networking scenarios, and, with respect to protocols that do not use any context information, is able to provide similar performance in terms of delay and loss rate, by using just a small fraction of the network resources. © 2009 Springer Science+Business Media, LLC.

Type
Publication
Autonomic Communication